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Stock Valuation in Dynamic Economies

Abstract

This article develops and empirically implements a stock valuationmodel. The model makes

three assumptions: (i) dividend equals a �xed fraction of net earnings-per-share plus noise, (ii)

the economy's pricing kernel is consistent with the Vasicek term structure of interest rates,

and (iii) the expected earnings growth rate follows a mean-reverting stochastic process. Our

parameterization of the earnings process distinguishes long-run earnings growth from current

growth and separately measures the characteristics of the �rm's business cycle. The resulting

stock valuation formula has three variables as input: net earnings-per-share, expected earnings

growth, and interest rate. Using a sample of individual stocks, our empirical exercise leads

to the following conclusions: (1) the derived valuation formula produces signi�cantly lower

pricing errors than existing models, both in- and out-of-sample; (2) modeling earnings growth

dynamics properly is the most crucial for achieving better performance, while modeling the

discounting dynamics properly also makes a signi�cant di�erence; (3) our model's pricing errors

are highly persistent over time and correlated across stocks, suggesting the existence of factors

that are important in the market's valuation but missing from our model. In addition to pricing

stocks, we can apply the model to back out market expectations about the �rm's future from

its stock price, allowing us to recover the relevant information embedded in the stock price.
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Valuation models for derivative and �xed-income securities have changed risk management and

investment practice in signi�cant ways. Examples include the Black and Scholes (1973), the Cox,

Ross, and Rubinstein (1979) binomial option-pricing model, the Vasicek (1977), the Brennan and

Schwartz (1979), the Cox, Ingersoll, and Ross (1985), and the Heath, Jarrow, and Morton (1992)

bond valuation models. In contrast, the stock valuation literature has not made as much progress.

Granted that stocks are intrinsically more di�cult to value, it is also true that asset pricing

research has focused largely on expected-return models, but not on stock valuation per se. In the

absence of a parameterized structure for future cash
ows, an expected-return characterization is

insu�cient for solving the stock valuation problem. Observe that existing equity valuation models

are primarily dividend-based and developed mostly for the purpose of valuing aggregate market

indices (e.g., Bakshi and Chen (1996, 1997), Bossaerts and Green (1989), Bekaert and Grenadier

(2000), Campbell and Shiller (1988a,b), Hansen and Singleton (1982), and Marsh and Merton

(1987)). For this reason, many such models may not be applicable to individual stocks, and they

typically fail to address the stochastic nature of interest rates and expected earnings growth.

The purpose of this paper is to develop a stock valuation model based on earnings, instead

of dividends. While our model is equally applicable to market indices, our focus is on valuing

individual stocks. The approach taken is partial-equilibrium, that is, we assume from the outset

that there is a stochastic earnings stream made possible by the �rm's existing production plan and

�nancial policy, and that a �xed proportion of the earnings (plus some noise) will be paid out as

dividends to shareholders. The goal of model development is to derive a stock valuation formula

that explicitly relates the stock's fair value to currently observable fundamental variables.

The model makes two additional assumptions. One, we assume a pricing-kernel process that is

consistent with a single-factor Vasicek (1977) term structure of interest rates. This pricing kernel

serves as the economy-wide valuation standard for future payo�s, and it implies a single-beta

equation for determining expected returns. Next, we assume that for the �rm under valuation,

its earnings-per-share (EPS) obeys a proportional process and grows at a stochastic rate, with its

expected growth following a mean-reverting process. This earnings structure captures the �rm's

business cycle with three important parameters: the long-run EPS growth rate, the speed at which

the current expected EPS growth reverts to its long-run mean, and the volatility of expected EPS

growth. This parameterization not only helps distinguish long-run growth from transitory growth,

but also measures the length and stages of the �rm's growth cycle. It leads to a dynamic term

structure of expected earnings growth rates.

Compared with the classic Gordon (1962) model, our framework o�ers two modeling innova-

tions. First, the discounting function of future risky payo�s is based on a stochastic term structure

of interest rates, whereas the Gordon model is based on a constant, 
at yield curve. This aspect
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will be referred to as the \stochastic interest-rates" feature. Second, the (conditional) expected

EPS growth follows a stochastic process and is hence dynamically changing over time, whereas

growth is constant and perpetual in the Gordon model. As our empirical exercise will show, this

\stochastic expected growth" feature is important to the success of the pricing model.

The resulting equity valuation model is shown to exhibit many desirable properties. For ex-

ample, the equilibrium price/earnings (P/E) ratio is increasing in both the long-run EPS growth

and the current expected growth, but its sensitivity to the former is far higher than to the lat-

ter. Similarly, the P/E is far more sensitive to the long-run interest rate than to the spot rate.

Furthermore, the shorter the �rm's business cycle, the higher the P/E ratio for its stock.

To study its empirical performance, we apply our stock valuation model and its special cases

to price the S&P 500 index, the 30 stocks in the Dow Jones Industrial Average, and a sample of

20 technology stocks. Our empirical �ndings are summarized below:

� In pricing the stocks and the S&P 500, our main model's performance is signi�cantly better

than any nested special case according to the average absolute pricing error, mean pricing

error, and pricing-error standard deviation. Among the sample stocks, the main model's

average absolute pricing errors range from 8.17% to 23.87% out-of-sample.

� The stochastic earnings growth feature contributes the most to our model's pricing perfor-

mance, while the stochastic interest-rates feature is also signi�cant. Overall, our empirical

tests indicate that modeling the EPS growth process properly is of the �rst-order importance.

� High-tech growth stocks such as Intel are generally harder to price than traditional blue-chip

stocks (e.g., GE and Exxon). The dispersion in model pricing-errors is generally much higher

for the former than the latter. Thus, a higher-dimensional earnings-growth structure may

be necessary to further improve the performance for technology �rms.

� The model's out-of-sample pricing errors are highly persistent within several months, and

they are correlated across the stocks, suggesting the existence of systematic factors that are

important in the market's valuation but are missing from the stock valuation model.

� The pricing performance results are robust with respect to the estimation methods used.

Our empirical exercise shows that alternative proxies for the interest rate and the expected

EPS growth rate do not signi�cantly change the model pricing errors.

Among other potential applications, our valuation model can be employed to recover, from

the stock price, the market's expectations about the �rm's future EPS growth. According to the

E�cient Market Hypothesis (EMH), a security's price should re
ect all information relevant for
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determining its future value. If the EMH is true and if our model is empirically well-speci�ed, one

should be able to use it to extract the market's expectations. This can be done in the same way

as the Black-Scholes model is applied to back out the volatility from option prices. For example,

if one believes that the market provides a better assessment of the �rm's future than analysts,

one can then use the market-implied expectations to price the same stock out-of-sample When

our model is implemented using the market-implied expectations, a substantial improvement is

observed in pricing performance.

Residual-income based valuation methods have also shown promise (e.g., Ohlson (1990, 1995),

Fetham and Ohlson (1999), Lee, Myers, and Swaminathan (1999), Ang and Liu (1999) and ref-

erences therein). There are, however, several fundamental di�erences between the accounting

residual-income approach and our framework. First, the basic building block for the residual-

income models is the clean surplus relation, which internalizes dividends, earnings and book

value. In contrast, our setting is partial equilibrium and takes an exogenous earnings process

as a given (and leaves out dividend and other corporate policy issues). Second, the empirical

implementation methods di�er. For instance, Lee, Myers, and Swaminathan (1999) rely on a

multi-stage residual-income discounting formula, and they calculate the model price as the sum of

(i) the current book value, (ii) the discounted value of multi-year residual-income forecasts, and

(iii) the discounted value of the terminal stock price at the end of the forecasting horizon. In

their case, forecasts of the terminal stock price and future multi-year residual-income are crucial

inputs. Instead of depending on such forecasts, our stock valuation model posits a joint Markov

structure for earnings, expected earnings growth and interest rate, so that the conditional expec-

tations are analytically solved as functions of currently observable variables. Consequently, for

empirical implementations of our model, there is no need to estimate a terminal stock price or

forecast future residual-incomes. Still, Lee, Myers, and Swaminathan (1999) demonstrate that

a carefully implemented multi-stage residual-income model can also yield reasonable pricing �t.

Third, our model is based on a stochastic pricing kernel. In this sense, our framework uni�es stock

valuation with known models in �xed-income and option pricing, ensuring consistency with other

areas in �nance.

The paper proceeds as follows. Section 1 outlines our assumptions and develops the stock

valuation model. Section 2 describes the data and the choice of empirical proxies. The parameter

estimates and empirical methods are discussed in Section 3. Section 4 focuses on the empirical

pricing performance and robustness issues. Section 5 examines the market-implied earnings growth

expectations. Concluding remarks are o�ered in Section 6. Proof of the pricing formulas is given

in the Appendix.
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1 A Dynamic Stock Valuation Model

Consider a continuous-time, in�nite-horizon economy whose underlying valuation standard for all

securities is represented by some pricing-kernel process, denoted by M(t). Take any generic �rm

in the economy, and assume that each equity share of the �rm entitles its holder to an in�nite

dividend stream fD(t) : t � 0g. Our goal is to determine the time-t per-share value, S(t), for each
time t � 0. Since the pricing kernel applies to every security, we have by a standard argument

S(t) =

Z
1

t

Et

�
M(�)

M(t)
D(�)

�
d�; (1)

where Et[�] is the time-t conditional expectation operator with respect to the objective probability

measure. Throughout this paper, all variables are given in nominal terms.

Given equation (1), the valuation task amounts to two steps: (i) specify \appropriate" processes

for M(t) and D(t), and (ii) solve the conditional expectations and the integral in (1). As in the

term structure and derivatives literature, the search for appropriate speci�cations is usually subject

to three considerations. First, the speci�ed structure for each variable should be consistent with

as many known empirical properties as possible. Second, the choice should be such that the

valuation problem in (1) is technically tractable. Parsimony and implementability are clearly

desirable. Third, the resulting solution to the problem in (1) should represent an empirically

well-performing stock valuation model.

1.1 The Assumptions

As in Constantinides (1992), we assume from the outset thatM(t) follows an Ito process satisfying

dM(t)

M(t)
= �R(t) dt� �m dWm(t); (2)

for a constant �m, where the instantaneous interest rate, R(t), follows an Ornstein-Uhlenbeck

mean-reverting process:

dR(t) = �r

�
�0r �R(t)

�
dt+ �r dWr(t); (3)

for constants �r, �
0
r and �r. The structural parameters have the standard interpretations: �r

measures the speed at which R(t) adjusts to its long-run mean (under the objective probability

measure), �0r . This pricing kernel leads to a single-factor Vasicek (1977) term structure of interest

rates. Berk, Green, and Naik (1999) apply the same pricing kernel to value projects and growth

options. Like in every single-factor term structure model, bond yields are perfectly correlated and

hence perfectly substitutable, a counterfactual feature. This limitation can however be relaxed
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by adopting a multi-factor model either in the Vasicek or the Cox, Ingersoll, and Ross (1985)

class. For our purpose we choose the simple Vasicek interest rate model as our focus is on stock

valuation.

Assume that the �rm under valuation has a constant dividend-payout ratio (plus noise), �

(with 1 � � � 0), that is,

D(t) dt = � Y (t) dt + dZ(t); (4)

where Y (t) is the �rm's earnings-per-share (EPS) 
ow at t (hence Y (t) dt is the total EPS over

the interval from t to t+ dt), and dZ(t) is the increment to a martingale process with zero mean.

Economically, dZ(t) cannot have a non-zero mean, because the �rm would otherwise be assumed

to pay an average non-zero dividend stream even if Y (t) is zero at each t. The existence of

dZ(t) allows the �rm's dividend to randomly deviate from the �xed proportion of its EPS, and

it makes D(t) and Y (t) not perfectly substitutable. Although this temporary deviation could be

correlated with recent earnings and past deviations, incorporating this feature into the assumption

would complicate the model. The constant dividend-payout-ratio assumption is commonly used

in accounting and equity valuation (e.g., Lee, Myers, and Swaminathan (1999)).

Note that the �rm's dividend policy is exogenous to our model. It is understood that the �rm's

production plan, operating revenues and expenses, and target payout-ratio are all �xed outside

our model, and the net earnings process, Y (t), is determined accordingly. Any deviation from the

�xed exogenous structure will lead to a change in the Y (t) process. For example, changing � will

lead to a new process for Y (t). Thus, taking � and its associated Y (t) process as given, our goal

is simply to value the cash
ow stream given in (4). In doing so, we are also abstracting from the

�rm's investment policy and growth opportunities, with the understanding that the Y (t) process

should indirectly incorporate these aspects. See Berk, Green, and Naik (1999) on how to value

growth options in the context of equity valuation.

The assumption embedded in (4) is only an approximation of economic reality. Strictly speak-

ing, many �rms do not pay cash dividends and hence the notion of dividend payout does not

apply. But, it is a crucial assumption in our model development. First, it allows us to directly

link stock price to the �rm's earnings, instead of dividends. This is an important feature because

(i) dividend-based stock valuation models (e.g., the Gordon model and its variants) have not suc-

ceeded empirically and (ii) investors are far more interested in the earnings potential of a stock

(rather than its dividends). Also, precisely due to the assumption (4), we can now value stocks

even if they don't pay any cash dividends. In recent years, more and more �rms (especially, tech-

nology �rms) have chosen to pay no cash dividends, but instead use their earnings to repurchase

outstanding shares or simply reinvest in new projects (Fama and French (2001)).
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Second, net earnings should in general be more informative than dividends because, even if a

�rm pays cash dividends, the dividend process is usually managed and arti�cially smoothed (and

thus less informative of the �rm's current conditions). For �rms that pay no dividends, earnings

will be the most e�ective signal for valuation. Therefore, Y (t) should be a more e�cient summary

of the �rm's �nancial and operating conditions. Linking a stock valuation formula to earnings

(instead of dividends) should make the model more likely to succeed empirically.

Assume that under the objective probability measure, Y (t) follows a process given below:

dY (t)

Y (t)
= G(t) dt+ �y dWy(t) (5)

dG(t) = �g

�
�0g � G(t)

�
dt+ �g dWg(t); (6)

for constants �y , �g , �
0
g and �g. The long-run mean for both G(t) and actual EPS growth dY (t)

Y (t)

is �0g, and the speed at which G(t) adjusts to �0g is re
ected by �g. Further, 1
�g

measures the

duration of the �rm's business growth cycle. Volatility for both earnings growth and changes in

G(t) is time-invariant. Shocks to expected growth, Wg, may be correlated with both systematic

shocks Wm and interest rate shocks Wr, with their respective correlation coe�cients denoted by

�g;m and �g;r. In addition, the correlations of Wy with Wg, Wm and Wr are respectively denoted

by �g;y, �m;y and �r;y. Thus, both actual and expected EPS growth shocks are priced risk factors.

The noise process dZ(t) in (4) is however assumed to be uncorrelated with G(t), M(t), R(t) and

Y (t), and hence it is not a priced risk factor.

The earnings process as parameterized in (5) o�ers enough modeling 
exibility of a �rm. First,

both actual and expected earnings growth can take either positive or negative values, capturing

the fact that a �rm may experience transition stages in its business cycle. Second, expected EPS

growth G(t) is mean-reverting and has both a permanent component (re
ected by �0g) and a

transitory component, so that G(t) can be high or low relative to its long-run mean �0g. As shown

later, this separate parameterization of the EPS growth process is useful for understanding both

time-series and cross-sectional variations in equity valuation. Finally, since Y (t) is observable

and G(t) can be obtained from analyst estimates, the resulting equity valuation formula will be

implementable.

The EPS process in (5) has one undesirable feature, however. Under the assumed structure,

Y (t) is positive with probability one. Yet, in practice, �rms have negative earnings from time to

time. For instance, about 7.08% of the observations in the I/B/E/S database have negative EPS

from 1976 to 1998. Therefore, even with this limitation, our theoretical framework is applicable to

a majority of publicly traded stocks. With suitable modi�cations to (5), earnings can take both
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positive and negative values. For example, Dong (2000) extends our model by translating the

current earnings as: X(t) � y0 + Y (t), where y0 is a constant such that X(t) is positive. Then,

he adopts the same dynamics for X(t) as given in (5)-(6), and the dividend policy as in (4).

The EPS growth process assumed in (5)-(6) leads to a single-factor term structure of expected

earnings growth. Speci�cally, de�ne

G(t; �) � 1

�
Et

�
log

Y (t+ �)

Y (t)

�
(7)

to be the expected � -period-ahead growth rate in earnings. We then have

G(t; �) = �0g �
1

2
�2y �

�0g (1� e��g�)

�g�
+
1� e��g�

�g�
G(t): (8)

This single-factor term structure of expected EPS growth implies that regardless of the forecasting

horizon, all expected growth rates are driven by G(t). In reality, it is unlikely that when revising

earnings forecasts for a given �rm, a security analyst always adjusts the one-quarter, one-year, two-

year and �ve-year-ahead EPS growth estimates in parallel. Thus, one criterion for specifying an

appropriate earnings process may be that the resulting term structure of expected earnings growth

should �t its observed counterpart (based on analyst forecasts) closely, much like how researchers

develop models to �t the term structure of interest rates. For implementation purposes, because

the expected instantaneous EPS growth G(t) is not directly observable, equation (8) can be used

to recover the value of G(t) from observable longer-horizon EPS forecasts.

As two examples, Figure 1 presents the time-series paths of the term structure of (consensus)

analyst EPS growth forecasts, separately for the S&P 500 index and for Intel (the data to be

described shortly). The forecasting horizons are one-quarter, half-year, one-year, two-year, three-

year, four-year, and �ve-year-ahead (whenever available). From Figure 1, it is clear that in both

cases the term structure of expected EPS growth does not shift parallelly, especially for Intel whose

expected EPS growth rates 
uctuate within a wide range. It is thus conceivable that for a �rm

like Intel a two-factor or a multi-factor term structure of G(t; �) should achieve a better �t, an

extension to be pursued in the future. In general, the nature of a �rm's business will determine how

many factors are appropriate for modeling the dynamics of the �rm's term structure of expected

EPS growth. For simplicity, we concentrate on the earnings structure given in (5)-(6).

1.2 The Valuation Formula

Substituting the above assumptions into (1), we see that the conditional expectations in (1), and

hence the stock price S(t), must be a function of G(t), R(t) and Y (t). Next, we apply Ito's lemma
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to S(t) and substitute the resulting expression into a risk-return equation. After simplifying the

terms, we arrive at a partial di�erential equation (PDE) for S(t):

1

2
�2y Y

2 @
2S

@Y 2
+ (G� �y)Y

@S

@Y
+ �g;y�y�g Y

@2S

@Y @G
+ �r;y�y�r Y

@2S

@Y @R
+ �g;r�g�r

@2S

@G@R
+

1

2
�2r

@2S

@R2
+ �r (�r �R)

@S

@R
+
1

2
�2g

@2S

@G2
+ �g (�g �G)

@S

@G
�RS + � Y = 0; (9)

subject to S(t) <1, where �y � �m�y�m;y is the risk premium for the �rm's earnings shocks, and

�g � �0g +
�m�g�g;m

�g
and �r � �0r +

�m�r�m;r

�r
are, respectively, the long-run means of G(t) and R(t)

under the risk-neutral probability measure de�ned by the pricing kernelM(t), with �m;r being the

correlation between Wm(t) and Wr(t). In the Appendix, we show that the solution to this PDE is

S(t) = �

Z
1

0
s(t; � ;G;R; Y ) d�; (10)

where s(t; � ;G;R; Y ) is the time-t price of a claim that pays Y (t+ �) at a future date t+ � :

s(t; � ;G;R;Y ) = Y (t) exp ['(�)� %(�)R(t) + #(�)G(t)] ; (11)

where

'(�) = ��y� + 1

2

�2r
�2r

 
� +

1� e�2�r�

2�r
� 2(1� e��r �)

�r

!
� �r�r + �y�r�r;y

�r

 
� � 1� e��r�

�r

!

+
1

2

�2g

�2g

 
� +

1� e�2�g�

2�g
� 2

�g
(1� e��g�)

!
+
�g�g + �y�g�g;y

�g

 
� � 1� e��g�

�g

!

��r�g�g;r
�r�g

 
� � 1

�r
(1� e��r� )� 1

�g
(1� e��g� ) +

1� e�(�r+�g)�

�r + �g

!
; (12)

%(�) =
1� e��r �

�r
; (13)

#(�) =
1� e��g�

�g
; (14)

subject to the transversality condition that

�r � �g >
�2r
2 �2r

� �r�y�r;y

�r
+

�2g

2�2g
+
�g�y�g;y

�g
� �g�r�g;r

�g�r
� �y: (15)

Thus, the model price for a stock is the summed value of a continuum of claims that each pay in

the future an amount respectively determined by the earnings process. The presence of an integral

in (10) should not hamper the applicability of the model. For applications, one can numerically
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compute the integral in the same way as numerical techniques are applied to solve the integral in

option-pricing models. Admittedly, the valuation formula in (10) is not as simple to comprehend

as the Gordon dividend growth model. But, stock valuation is a complex process in reality, as

both discounting and cash
ow forecasts have to simultaneously assessed at the same time.

Note that the valuation formula in (10) is solely a function of time-t variables. As a result,

implementation does not require estimating multiple future cash
ows or the end-of-horizon stock

value (as is commonly done for multi-stage discounted cash
ow or residual-income models). This

convenient feature is due to the fact that with the parameterized Markov structure for Y (t), G(t)

and R(t), all the conditional expectations in (1) are solved in terms of functions of time-t variables.

In deriving the valuation formula, we relied on a CAPM-like risk-return relation to arrive at

the PDE in (9). In this sense, our model is consistent with and built upon developments in the

risk-return literature. But, as seen, a risk-return equation alone is not su�cient to determine a

fair value for a stock since assumptions on the earnings/cash
ow processes are also needed.

Three special cases of the main model in (10) are worth noting. The �rst case is obtained

by setting R(t) to be constant over time, but maintaining the stochastic processes for Y (t) and

G(t) as in (5) and (6). We refer to the resulting case as the SG model, since it allows for

stochastic expected EPS growth. For the second case, we set G(t) to be constant over time, but

allow interest rate R(t) to be stochastic as given in (3). We call this case the SI model (i.e., the

stochastic-interest-rate model). The corresponding stock valuation formulas are provided in the

Appendix for the SG and the SI models.

The third special case is an extended version of the Gordon model, in which both G(t) and

R(t) are constant over time: G(t) = g and R(t) = r, for constants g and r. Consequently, both

M(t) and Y (t) follow a geometric Brownian motion. In this case, we obtain

S(t) =
� Y (t)

r + �y � g
; (16)

provided that r + �y � g > 0. In the empirical analysis to follow, we will compare the relative

pricing performance by our main model and its nested variants, in order to study the contribution

of each assumption.

In equity valuation, a common relative-price yardstick is the price/earnings (P/E) ratio, partly

because P/E is comparable both across di�erent times for the same �rm and among distinct �rms.

For this reason, we can re-express (10) below:

P (t) � S(t)

Y (t)
= �

Z
1

0
exp ['(�)� %(�)R(t) + #(�)G(t)] d�: (17)
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Thus, the equilibrium P/E ratio, P (t), is a function of the interest rate, the expected EPS growth,

the �rm's required risk premium, and the structural parameters governing the earnings and interest

rate processes. This implies that two �rms with the same G(t) can have di�erent P/E ratios if

they di�er in the parameters of their earnings processes.

1.3 Comparative Statics

To explore the properties of the valuation model in (10), we turn to the comparative statics of the

P/E function, P (t). While we can derive the comparative statics explicitly, they are cumbersome.

For this reason, we give an example to illustrate how the P/E ratio will respond to any parameter

change. In this example, we set � = 5:50%, �r = 7:01%, �r = 0:086, �r = 0:55%, �g = 12:77%,

�g = 0:87, �g = 13:74%, �y = 24:41%, �g;r = �r;y = �0:91, �y = 0:136, and �g;y = 1. We assume

R(t) = 7:0% and G(t) = 12:0%.

In Figure 2, we �rst plot the equilibrium P/E respectively against G(t) and R(t). As expected,

the P/E ratio is increasing in G(t), but decreasing in R(t). The P/E is convex in R(t), but

virtually linear in G(t). From Figure 2, we can also observe that the stock's P/E is monotonically

increasing in the long-run mean �g, but decreasing in �r.

To examine the relative sensitivity of the P/E to G(t) and its long-run mean growth rate �g,

de�ne �g � @P (t)
@�g

=
@P (t)
@G(t) . For this example, we obtain �g = 732:26. Thus, the P/E and the stock

price are much more sensitive to �g than to G(t). Intuitively, this is true because the spot expected

EPS growth G(t) may have a transitory component, whereas a change in �g is permanent.

Similar comparison can be made between the impact of R(t) and that of �r on the model price.

In this case, �r � @P (t)
@�r

=
@P (t)
@R(t) = 14:84. Thus, a 1% increase in the long-run interest rate causes

the P/E to change 14.84 times as much as a 1% increase in the spot rate.

As plotted in Figure 3, the faster the spot G(t) reverts to its long-run mean (i.e., the higher

�g), the higher the P/E and the stock price. Therefore, the longer the �rm's growth cycle (the

lower �g), the lower P/E multiple for its stock. In addition, Figure 3 shows that the slower the

spot R(t) reverts to �r , the higher P/E multiple for the stock. Lastly, the model P/E increases

monotonically with EPS growth volatility �y . The reason is as follows. Given the Y (t) dynamics in

(5), future EPS 
ow Y (�), for any � > t, is convex in the cumulative future shocks,Wy(�)�Wy(t),

assuming �y > 0. Consequently, the conditional expectations in (10) must be increasing in �y (by

Jensen's inequality). For the same reason, the model P/E is, as shown in Figure 3, increasing in

the volatility of expected EPS growth, �g.
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2 Data Description and Implementation Considerations

To evaluate the empirical performance of our model, we need to choose a sample of stocks and

address several empirical issues. For stock price and earnings data, we use the I/B/E/S US

History File, which containsmid-month observations on reported actual EPS and consensus analyst

forecasts of future earnings, plus the contemporaneous stock prices. Since the available stock

universe is rather large, we focus on three representative sets of stocks/indices. In the �rst set,

we include all 30 stocks comprising the Dow Jones Industrial Average (hereby, the Dow). The

Dow stocks are all large-capitalization blue-chip �rms, representing di�erent sectors with distinct

growth histories.

The second set contains 20 technology stocks, including �rms under tickers ADBE, ALTR,

AMAT, CMPQ, COMS, CSC, CSCO, DELL, INTC, KEAN, MOT, MSFT, NNCX, NT, ORCL,

QNTM, STK, SUNW, TXN and WDC. These companies have relatively long trading histories

and come from diverse areas of technology. As technology �rms face greater future uncertainty

and exhibit more earnings volatility, valuing them has been challenging both in theory and in

practice. Finally, we include the S&P 500 index in our valuation exercise, because it is the most

widely followed benchmark index.

For the S&P 500, I/B/E/S did not collect analyst EPS estimates until January 1982. The

I/B/E/S coverage starting date is January 1976 for some individual stocks and later for others.

Thus, the sample period di�ers across the index and individual stocks. In the original sample,

there are 7664 observations for all the Dow component stocks, and 3464 observations for all of the

20 technology stocks.

To construct the required data, we need three fundamental variables: current EPS Y (t),

expected EPS growth G(t) and interest rate R(t). In the model, each of the three follows a

continuous-time process, whereas all the data counterparts are discretely sampled once each month.

In order to narrow the gap between theory and implementation, we can only rely on empirical

proxies. First, we use the I/B/E/S consensus analyst estimate for current-year (FY1) EPS as a

proxy for Y (t) (provided Y (t) > 0). In any given month, the FY1 estimate may contain actual

quarterly EPS numbers (for the passed quarters of the �scal year), with the EPS numbers for

the remaining quarters being consensus analyst forecasts. Note that for a typical �rm, while

actual earnings occur continuously over time, accounting earnings are reported only quarterly.

Furthermore, most �rms' earnings exhibit seasonalities. For this reason, the total EPS over a

�scal year should be a natural proxy for Y (t).

In contrast, proxies for G(t) are harder to identify. For our empirical work, we use the analyst-

expected EPS growth from the current (FY1) to the next �scal-year (FY2) as a proxy for G(t).

11



This proxy choice is reasonable since the year-over-year EPS growth has been the conventional

calculation method in the industry. For instance, quarter-over-quarter and month-over-month

(if available) EPS growth rates would not be better proxies for G(t), as they would be subject

to seasonal biases in earnings and revenue. For robustness, we have also examined two other

alternatives. First, we could use the recent 12-month trailing EPS as the current-year EPS and

the analyst consensus estimate for the immediate future 12-month EPS as next year's EPS, so

that we would determine the expected future EPS growth G(t) on a monthly rolling basis. But,

the I/B/E/S History File has such detailed earnings forecasts going back only to 1984, whereas

the FY1 and FY2 estimates are available as early as January 1976. To retain a longer time

series, we stay with the consensus FY1 and FY2 EPS estimates. Next, we can back out the

instantaneous expected EPS growth G(t) from forecasts for longer-horizon EPS growth rates,

using the relationship in equation (8):

G(t) =
�g�

1� e��g�

 
G(t; �)� �0g +

1

2
�2y +

�0g (1� e��g� )

�g�

!
; (18)

where for G(t; �) we can use the expected one-year-forward growth rate. In Section 4.3, we will

implement this alternative and compare the resulting performance.

As there is no established benchmark for the spot rate (Chapman, Long and Pearson (1999)),

we employ the 30-year Treasury yield as a proxy. The reasons are as follows. First, in the Vasicek

term structure, the yields of di�erent maturities are perfectly correlated with each other and hence

interchangeable. Thus, any � -year yield R(t; �) can be used to represent the single factor, with R(t)

backed out from the chosen R(t; �) using the relationship: R(t; �) = A(�) + ��1r (1� e��r�)R(t),

where A(�) is a deterministic function.1 In this sense, within the Vasicek model, choosing either

the 30-year yield or any other interest rate should mean the same information. Second, empirically,

the 30-year yield is much more closely followed by stock market participants than short-term rates,

as the long-term rate is believed to be more relevant for equity valuation.2 In addition, we have

also experimented with the 3-month Treasury bill rate and the 10-year Treasury yield, a topic

to be examined in Section 4.3. The source of the monthly interest-rate series is DataStream

International, Inc.

1See Longsta� and Schwartz (1992), where they replace two unobservable state variables with linear functions
of two observable interest-rate variables, and Schwartz (1997) for examples of this substitution technique.

2To substantiate this point we regress the earnings yield of the S&P 500 index on the 30-year Treasury yield
(denoted \Long") and the 3-month Treasury bill rate (denoted \Short"): Y(t)/S(t) = �0:007 + 0:34Short(t) +
0:67 Long(t) + ~!(t). The t-statistics for both coe�cients are signi�cant, with an adjusted R

2 of 89.4%. When the
3-month rate is the sole independent variable, the adjusted R

2 is 79.09%; when the 30-year yield is the explanatory
variable, the adjusted R

2 is 86.55%. Our exclusion tests show that the 30-year yield is more signi�cant in explaining
the earnings yield of the S&P 500. Similar conclusions hold when we replace the S&P 500 by the Dow stocks.
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Table I presents summary statistics for the stock samples and four individual stocks. The

average expected EPS growth over each stock's sample period ranges from 7.81% for Exxon,

10.13% for S&P 500, to 51.59% for Intel. The average expected growth rate for the Dow stocks

is 21.07%, compared to 49.23% for the 20 technology stocks. Among the four individual stocks,

GE has the lowest growth volatility, while Intel's growth is by far the most volatile. Intel has the

highest average market P/E, whereas the slowest-growth Exxon has the lowest average P/E. The

average P/E is 14.22 for the Dow stocks versus 22.56 for the 20 technology stocks. Furthermore,

the cross-sectional variation in stock returns is substantial, especially for the technology stocks.

Although not reported, the average 30-year yield is 8.90% with a standard deviation of 2.13%.

3 Parameter Estimation

In this section we use the main model to illustrate our empirical methods. We then discuss the

parameter estimates. Two approaches are considered for estimating the parameters in (10):

1. Estimate the parameters directly from the individual time-series of G(t), Y (t) and R(t).

While the parameters so estimated serve as a useful benchmark, such a procedure ignores

how the stock has been valued by the market in the past.

2. Estimate all the parameters from historical data (including the stock's past prices), in the

same way as one recovers volatility from observed option prices (Bakshi, Cao, and Chen

(1997)). This approach is at the center of our empirical estimation, for two reasons. First,

parameters so estimated re
ect the historical valuation standard applied to the stock by the

market. Second, it permits the joint estimation of the risk-neutralized parameters and the

risk premium.

To reduce the estimation burden, we preset two parameters: �g;y = 1, and � � �g;r = �r;y.

That is, the actual and expected earnings growth rates are subject to the same random shocks.

For the main model, there are 10 parameters remaining: � � f�g; �g; �g; �y; �y; �; �; �r; �r; �rg.
The SG and the SI models each have 7 structural parameters to be estimated.

3.1 Parameter Estimates Independent of Stock Prices

We �rst estimate the parameters under the objective probability measure. To explain the maximum-

likelihood method, take the dynamics of G(t) given in (6) as an example. By solving the backward
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equation for the transition density of G(t), we obtain the maximum-likelihood criterion function:

L � max
�g;�g;�g

1

T

TX
t=1

log

�
1

�

Z
1

0
Re [F (t; �; G(t); u)� exp(�i uG(t+ �))] du

�
; (19)

where i =
p�1, T is the number of months in the sample, and F (t; �; G(t); u) is the characteristic

function for the density given below:

F (t; �; G(t); u) = exp

"
i u �0g

�
1� e��g�

�� u2 �2g

4�g

�
1� e�2�g�

�
+ i u e��g�G(t)

#
: (20)

Based on the monthly time-series for G(t), we set � = 1
12

and report the maximum-likelihood

parameter estimates in Table II. Several observations are in order. First, according to the �g

estimates, the S&P 500 has the longest business cycle (as its �g is the lowest) while Intel's business

cycle is the shortest. As the �g's of the Dow and technology stocks are comparable, their business

cycles are similar in duration. Second, consistent with Table I, the point estimate of long-run

growth rate, �0g, is higher for the technology stocks than for the Dow stocks. Third, the volatility

of expected EPS growth (�g) is about twice as high for the technology stocks as for the Dow

stocks. Finally, the mean-reverting process in (6) �ts the expected EPS growth process for the

Dow stocks better than for the technology stocks (based on the maximized L). Therefore, for

technology �rms, richer dynamics for G(t) may be necessary to improve the structural �t.

Using a similar maximum-likelihood procedure, we estimate the interest rate parameters from

the 30-year yield time-series. The long-run interest rate, �0r , is 7.94% and its volatility, �r, is 1.18%,

both of which are consistent with their historical counterparts. The estimate for �r is 0.107. These

estimates are comparable to those reported in Chan, Karolyi, Longsta�, and Sanders (1992, Table

III).

In addition, Table II presents (i) the sample correlation between interest rate changes and

changes in expected EPS growth, �, and (ii) the dividend-payout ratio, �. The estimate for � is

obtained by regressing dividend yield on earnings yield (with intercept constrained to zero). The

� estimate ranges from Exxon's 61.79%, the S&P 500's 44.29%, to Intel's 3.39%. The average

� across the technology stocks is 3.84%. Moreover, the average � across the Dow (technology)

stocks is 0.02 (-0.02). The risk-premium parameter, �y , cannot be estimated from the realizations

of earnings and expected earnings growth, and it can only be backed out from stock prices.
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3.2 Parameter Estimates Implied by Stock Prices

In order to estimate a model's parameters from observed stock prices, we need to �nd an ap-

propriate method. Like option pricing formulas, a stock valuation model such as (10) is not a

set of moment restrictions on asset prices. Rather, it is an exact restriction on the equity price

in relation to the contemporaneous EPS, the expected EPS growth, and the interest rate. For

this reason, the generalized method of moments and related econometric techniques may not be

applicable.

We follow two estimation methods, one correcting, and the other not correcting, for the serial

correlation of the model errors. To describe the �rst method, let P (t) be its month-t observed

P/E ratio for a stock and de�ne "(t) � P (t)� P (t), where P (t) is the model P/E determined in

(17). Then, the SSE estimation procedure tries to �nd a � to solve

RMSE � min
�

vuut 1

T

TX
t=1

j"(t)j2; (21)

subject to the transversality condition in (15). This method seeks to minimize the sum of squared

errors between each observed P/E and the model-determined P/E. P/E serves as a normalized

price that is comparable across time periods for the same �rm. If the objective would be to �t the

observed price levels as closely as possible, the estimation procedure would then favor the higher

price observations.

The optimized objective function value from (21), RMSE, is zero only if the obtained � estimate

leads to a perfect �t of each market P/E by the model. In general, the average in-sample P/E-

pricing error (i.e., the mean value of "(t)) will not be zero because the objective in (21) is to

minimize the sum of squared errors, but not the average pricing errors.

One possible drawback of the least-squares method just outlined is that it fails to account for

serial correlations of the model pricing errors. To incorporate this feature into our procedure,

we assume a �rst-order autoregressive process for the error: "(t) = � "(t � 1) + �(t), where

�(t) � N
�
0; �2�

�
. It can be shown that this procedure, referred to as the AR-1 estimation,

involves modifying (21) to:

�L� � max
�;�;��

� log
�q

2 � �2�

�
� 1

2�2� T

TX
t=2

j "(t) � � "(t� 1) j2 : (22)

We will apply the minimization procedures to implement the main, the SG, the SI and the extended

Gordon models.

Based on the full sample, we report in Panel A of Table III the parameter estimates for the
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main model. First, note that in most cases, the market-implied parameter values in Table III are

consistent with their respective independent estimates in Table II. For example, in the case of �g

the relative estimates are similar between Tables II and III, in that the �g for the technology stocks

is signi�cantly higher than for the Dow stocks. However, some di�erences exist in the �g estimate

between the two tables. While the �g estimate is comparable for the technology stocks, the market-

implied �g for the Dow stocks is lower than its counterpart in Table II. Second, the parameter

estimates are generally comparable between the SSE estimation and the AR1 estimation methods.

For example, according to the market-implied �g, the Dow stocks have an average long-run growth

of 14.6% under the SSE and 14.7% under the AR1 estimation method. For the technology stocks,

the average �g is 37.1% under the SSE and 42.8% under the AR1 method. Similar degree of

consistency holds between the two methods for other parameters.

The most signi�cant inconsistency between Tables II and III concerns the correlation �: while

the historical sample averages suggest a positive (or, slightly negative) correlation between interest

rates and expected EPS growth, the market-implied � is signi�cantly negative for all stocks. For

instance, the market-implied � is �0:409 (under the SSE), while the historical sample estimate is
0.02 for the Dow stocks. Another inconsistency lies in the dividend-payout ratio �: the historical

average payout ratios in Table II are generally lower than their market-implied counterparts in

Table III. These di�erences are indicative of how the market has priced the stocks in the past, that

is, the estimates in Table III re
ects the parameter values under the risk-neutralized probability.

Table III also gives the market-implied earnings risk premium, �y, and it di�ers across the

stocks. The average �y is 0.256 (0.420) for the Dow (technology) stocks. Therefore, the Dow

stocks generally have lower risk premium than the technology stocks.

Note that the error-term's serial correlation � is strongly positive for both the Dow stocks

and the technology stocks. Despite the positive serial correlation in the P/E pricing errors, the

parameters are not overly sensitive to the existence of the AR1 correction term. This implies

that the parameters based on the SSE method are relatively robust. Regardless of the estimation

method, the average in-sample �tting errors (i.e, RMSE and L�) are much worse for the technology
stocks than for the Dow stocks.

In Panel B of Table III, we report the parameter estimates based on rolling three-year

subsamples. Take Intel as an example. We �rst apply the least-squares procedure (the SSE

method) to the 1976-1978 subperiod (36 monthly observations on Intel and interest rates), to

estimate the ten parameters in �. Next, we use the 1977-1979 subperiod as input to re-estimate

the parameters in �. This rolling process continues for each of the 20 years until 1997, to create a

time series of estimates for each parameter. As it does not assume the constancy of the parameters

over long intervals, the rolling procedure is attractive from an empirical perspective and these
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subsample-based estimates will be used in our out-of-sample pricing exercise. Panel B reports

both the mean and standard error (in parentheses) of each parameter's time series. We do not

report any AR1 estimation results for the subsamples as Panel A has established the similarity

between the SSE and the AR1 methods.

The three-year-subsamples based estimates in Panel B of Table III are close to their full-sample

counterparts in Panel A. This is especially true for �g, �g, � and all the interest-rate parameters.

Since the risk premia are allowed to vary over time, the subsample �y estimates appear slightly

lower than their full-sample counterparts. As it is easier to �t the shorter subsamples than the full

sample, the average RMSE �tting errors are lowered from 1.66 to 1.058 for the S&P 500 index,

and from 3.088 to 1.934 for the Dow stocks. Doing the estimations more frequently improves the

in-sample �t of the main model considerably.

In summary, the market-implied parameter values are mostly consistent with their historical

counterparts, except for a few parameter estimates. These exceptions are indeed challenging from

the perspective of model development. If we accept the assumption that the market prices are

correct, then the inconsistencies between Tables II and III suggest that the model is misspeci�ed

(even though to a lesser degree than the Gordon model and other alternatives, as discussed later).

But, economically, how signi�cant is our main model's misspeci�cation? This is the question

that we want to address next. The parameter estimates for the other models will be discussed in

Section 4.1.

4 Empirical Pricing Performance

While the consistency of market-implied parameter values with their independently estimated

counterpart is an important concern for model development, an economic yardstick may be whether

a given model provides a \good enough" approximation of the market's implicit valuation process.

In this section, we study the in- and out-of-sample pricing performance by our main model and

its three special cases. Our task is to address the following points: (i) the relative performance

of the models, (ii) the contribution and importance of each modeling feature, (iii) the time-series

and cross-sectional properties of model pricing errors, and (iv) sensitivity to the empirical proxies.

A common research issue on stock valuation concerns what constitutes a \good" model. In

this regard, we follow Lee, Myers, and Swaminathan (1999) to propose the following perspective.

Suppose that at time t both the market and the model try to approximate a stock's unobservable

true value process by giving S(t) and S(t), respectively. Let �(t) and ��(t) be their respective
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approximation errors. The di�erence in errors is

e(t) � �(t)� ��(t) = S(t)� S(t): (23)

We can then evaluate the model by examining the pricing-error process f e(t) : t � 0g, or its
market-price-normalized counterpart, f �(t) : t � 0g, where �(t) � S(t)�S(t)

S(t)
. For a \good" valu-

ation model, the percentage pricing error �(t) should �rst have a zero mean and a low standard

deviation over time. Even if the mean of �(t) is non-zero, the valuation model will still be empir-

ically acceptable, so long as �(t) has little or no variation over time. If the mean and standard

deviation of �(t) are both zero, it means the model captures the market valuation mechanism

perfectly (though the market could still be wrong in approximating the true value). On the other

hand, if �(t) is large in magnitude, either the model or the market is wrong. For our discussions

to follow, we assume that the market fairly prices stocks and we use the statistics of �(t) to draw

inferences about model misspeci�cations.3

4.1 In-Sample Pricing

We start with in-sample pricing by the four cases: (i) our main model, (ii) the SG model (allowing

for stochastic G(t) but a constant yield curve), (iii) the SI model (accounting for a stochastic yield

curve but constant expected EPS growth), and (iv) the extended Gordon model. For the in-sample

pricing error in each month, the parameter values estimated from the stock's entire sample period

are used as input to compute the model price of the stock. That is, in the case of formula (10),

the � estimate is applied to price the stock in the same time period as the parameter-estimation

sample. This calculation is separately done for both the SSE and the AR1 estimation methods.

In Table IV, we present three percentage pricing-error measures, computed by dividing the

market-to-model price di�erence by the market price: (i) the absolute percentage pricing error,

denoted by APE, (ii) the mean percentage pricing error, denoted byMPE, and (iii) the standard

deviation of the pricing-error time series, denoted by STD. The MPE re
ects the average pricing

performance, while the APE re
ects the magnitude of the pricing errors as negative and positive

errors do not cancel out each other. For convenience, the four models are separated under their

respective headings.4

3Chen and Dong (1999) examine the power of �(t) in predicting future returns across a large sample of individual
stocks. They take the alternative view that a non-zero �(t) process may be indicative of both the model and the
market being wrong: the more signi�cant the pricing errors �(t) in predicting future returns, the more likely that
the errors are due to the market.

4Throughout this subsection, the interest-rate parameters are separately estimated and applied for each stock.
In theory, the same set of interest-rate parameters should apply to each and every stock in the economy. For this
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First, let us examine the performance by our main model and based on the SSE parame-

ter estimates. According to the pricing-error measures, the model's �t is reasonable across the

stocks/indices. The average MPE and average STD are respectively -4.14% and 20.37% for the

Dow stocks, and -5.71% and 27.90% for the technology stocks. Given the negative sign of the

MPE, the model price is on average higher than the market price. The APE ranges from the

S&P 500's 7.78%, to 16.53% for the Dow stocks, and 22.61% for the technology stocks. All three

measures indicate worse performance in pricing the technology stocks than the Dow stocks. This

conclusion is reinforced by the fact that the pricing-error STD is 9.78% for the S&P 500, 16.76%

for GE, but 33.93% for Intel.

Second, note from Table IV that the pricing performance is slightly worse when the main model

is implemented using the AR1 estimation than the SSE method. For the S&P 500, the APE is

8.23% under the AR1 estimation and 7.78% under the SSE estimation. Similarly, the APEs are

respectively 17.85% and 16.53% for the Dow stocks, and 22.84% and 22.61% for the technology

stocks. While it is theoretically desirable to account for the serial correlation of the pricing errors

in parameter estimation, the pricing performance is slightly worse. For this reason, our remaining

discussions will rely on the results based on the SSE estimation method.

Compared to the main model, the SG, the SI and the extended Gordon models each provide a

much poorer �t. In implementing each of these models, we allow both R(t) and G(t) to take their

respective currently observed values (even when one or both of them are assumed to be constant in

a given model), but restrict each model's parameters according to its assumptions. For example,

in the case of the Gordon model, the month-t values used for r and g are still the 30-year yield

and the �rm's expected EPS growth as of month t (thus, they both vary over time), but there

are only two parameters to be estimated (see equation (16)): � and �y. Consequently, this ad hoc

treatment should give each special case a favorable bias.

It should be mentioned that several constraints are imposed on the estimation procedure of

each model. First, we require 0 � � � 99.0%, ensuring that the �rm's dividend does not exceed

its earnings. Second, in each speci�c case, the corresponding transversality condition usually puts

severe restrictions on its feasible parameter values. For example, in the extended Gordon model,

�y has to satisfy �y > maxfG(t)�R(t) : t = 1; : : : ; Tg, so that the denominator in (16) would not

be zero or negative. For technology stocks such as Intel, this restriction means that �y has to take

extremely high values (because of the frequently high expected EPS growth rates). Consequently,

the Gordon model prices for such stocks are usually extremely low, resulting in extremely high

reason, we have applied the interest-rate parameters estimated from the S&P 500 data to all other stocks/indices
and found the pricing performance to be only marginally worse. We thus choose to report the pricing results based
on separately estimated interest-rate parameters.
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pricing errors for the model. To save space, we do not report the parameter estimates for these

special-case models. However, we should point out that for all these special cases and for each

stock/index, the estimated � always hits the upper bound at 99.0%. That is, for these models to

achieve their pricing performance shown in Table IV, the average dividend-payout ratio has to be

as high as 99.0%, which is at odds with the dividend-payout ratios given in Tables II and Table

III. Furthermore, under the extended Gordon model, for example, the estimate for �y is 500% for

Intel. Therefore, the SG, the SI and the Gordon models are signi�cantly more misspeci�ed than

our main model.

According to the percentage pricing errors in Table IV, our main model is ranked the best,

followed by the SG, the SI, and the Gordon model. This relative performance ranking holds

regardless of the stock/index being priced and irrespective of the sample period (based on the full

sample or the unreported subsamples). For instance, the APE by the Gordon model is 60.40%

for the S&P 500 and 98.07% for Intel. For these two stocks, the SI model's APEs are 50.76%

and 87.51%, respectively. The fact that the SI model performs better than the Gordon model

means that allowing for stochastic interest rates improves the discounting of future cash
ow by

the model. The percentage improvement in the APE is the highest for the S&P 500. For example,

in comparison to the Gordon model, the SI model reduces the pricing errors of the S&P 500 to

50.76%. Thus, going from the Gordon to the SI model, the pricing �t improves for every stock,

especially for the S&P 500.

From the Gordon to the SG model, the in-sample pricing-error reduction is even more dramatic.

For instance, the APE by the SG is 31.32% for the S&P 500 and 80.67% for Intel, compared to their

respective APEs of 60.40% and 98.07% by the Gordon model. Therefore, modeling the expected

EPS growth, G(t), properly is crucial for stock valuation. Recall that in our implemented Gordon

and SI models the g parameter is allowed to assume the current expected EPS growth value (and

is hence time-varying), But, even given such a favorable treatment for these two models, the SG

model can still improve upon them signi�cantly, implying that allowing the growth rate to vary

over time is not enough and, more importantly, one should parameterize the �rm's growth process

so that business-cycle aspects of the �rm are separately captured.

While modeling stochastic expected EPS growth is of the �rst importance, adding the stochastic-

interest-rate feature leads to further improvement. This conclusion can be drawn from the lower

pricing errors achieved by the main model relative to the SG model. For example, the APE

for the Dow stocks is 16.53% by the main model versus 43.82% by the SG model. Similarly,

the APE and MPE for the S&P 500 are respectively 31.32% and 29.32% by the SG model, but

reduce to 7.78% and -0.86% by the main model. In summary, the proper parameterization of

both the discounting structure and the earnings process is key to the improved performance by
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the main model. However, even under the main model, the magnitude of the APE, the MPE and

the pricing-error standard deviation is still quite high, especially for the technology stocks. This

means that further improvement is warranted.

It is worth noting that under the extended Gordon model, both the APE and MPE are 98.07%

for Intel. As noted in the preceding section, this high level of pricing errors is mostly due to

the transversality condition that the risk premium estimate �y must be high enough to ensure

r + �y � g > 0. Given the frequently high growth rates of Intel, the resulting �y is over 500% for

Intel, which works to discount Intel's future EPS extremely aggressively and yield a low Gordon

model price for the stock. Therefore, it is the model's internal parameterization that causes the

high pricing errors.

We have also implemented each of the three special cases using the AR1 estimation method.

As displayed in Table IV, the AR1 estimation-based pricing errors are generally higher than their

SSE estimation-based counterpart. To save space, we do not report the performance statistics

based on the dollar pricing errors by each model. But, the dollar pricing errors support the same

conclusions about the models' relative performance as the percentage pricing errors.

As a �nal point, we can examine the model's relative performance from the following regression

speci�cation (~!(t) is regression disturbance):

P (t) = �0 + �1 P (t) + ~!(t); (24)

where P (t) is the market P/E in month t and P (t) the counterpart determined by the model

under consideration. If a given model perfectly �ts a stock's P/E variations over time, we should

obtain �1 = 1, with a regression R2 of 100%. The regression results are presented in Table V for

each pricing model. According to the R2, the SI model is not uniformly better than the extended

Gordon model. Judged on both the �1 and R2 values, the main model performs by far the best:

it can account for 83.35% of the S&P 500's P/E 
uctuations and 59.53% of Intel's P/E variations.

For the main model, all the �1 estimates are close to one. The SG model's �t is signi�cantly better

than both the Gordon and the SI model, re-a�rming our conclusion that allowing the expected

EPS growth to be stochastic is the most important for equity valuation. The relative pricing

results in Table V demonstrate that having more parameters in a stock valuation model does not

guarantee better performance: it is the structural �t provided by the model that is more crucial.

4.2 Out-of-Sample Pricing

For the remainder of this paper, we concentrate on the main model for three reasons. First, the

relative performance ranking among the main model and its special cases remains unchanged,
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whether it is based on in- or out-of-sample pricing results. Second, it allows us to conduct a

detailed examination of robustness issues and gauge their sensitivity to empirical proxies. Finally,

it helps us stay within space constraints.

For out-of-sample pricing, suppose that we intend to price the stock for each month of year t.

First, we take as input the parameter values estimated from the 3 years prior to year t, and apply

them to each month of year t. Next, we substitute these estimates and the current-month values

of G(t), R(t) and Y (t) into the formula to determine the current-month model price. Then, we

proceed to year t+1 to get a new trailing 3-year subsample, and apply the re-estimated parameters

to each month of year t+ 1. This procedure continues until 1998. Since the initial three years of

data (from 1976:01 through 1978:12) is required to determine the �rst set of out-of-sample pricing

errors, all out-of-sample results are based on the 1979:01-1998:7 sample period. Thus, there are

at most 235 observations of pricing errors for any stock. Table VI consolidates the out-of-sample

results for two model error series: the percentage and the dollar pricing errors.

Consider �rst the statistics for out-of-sample percentage pricing errors: the average absolute

value (APE), the mean (MPE), and the standard deviation (STD). Typically, the out-of-sample

errors are slightly worse than their in-sample counterpart in Table IV. For example, the S&P 500's

APE is now 8.17%, compared to its in-sample counterpart of 7.78%. The average APEs across the

Dow stocks and the technology stocks are respectively 17.00% and 22.91% out-of-sample, versus

their in-sample counterpart of 16.53% and 22.61%. Given that the APEs are generally higher for

the technology stocks, the main model is considerably more misspeci�ed when applied to growth

stocks.

Based on the MPE statistic, the main model underprices the S&P 500, while it overprices

the Dow stocks and the technology stocks on average. The average MPE is -1.15% for the Dow

stocks, and -2.58% for the technology stocks. Despite the low MPEs, the pricing-error standard

deviations are large: the average STD is 21.38% across the Dow stocks and 28.26% across the

technology stocks. Therefore, there is substantial variation, both over time and across stocks, in

the ability of the model to track stock prices. In general, there is a high correlation between the

in-sample and out-of-sample error statistics.

Table VI also reports the average absolute dollar pricing error (denoted by ADE), the mean

dollar pricing error (MDE), and the standard deviation of dollar pricing errors (STDD). The

average ADE is $4.75 for the Dow stocks versus $3.89 for the technology stocks. The ADE and

MPE are respectively $41.99 and $22.78 for the S&P 500. We should note, however, that most

�rms' EPS and their stock prices tend to go up over time, so that even if a �rm's percentage

pricing error stays within a range over time, the dollar pricing errors for more recent months can

dominate earlier errors. Since more expensive stocks are likely to have higher dollar errors, the
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dollar pricing errors are not directly comparable across stocks.

We can also analyze the model mispricing patterns by combining Table VI with Figure 4,

where we plot separately for the S&P 500 and Intel: (i) the actual versus the out-of-sample model

price path, and (ii) the percentage pricing-error path. For the most part, the main model tracks

the actual S&P 500 index reasonably well, except for a few short periods. For instance, in the

case of the S&P 500 the pricing error was more than 10% several times (in early 1985, early

through October 1987, early 1991, September 1996 through December 1997, and most recently

in 1998). These past periods were each time followed by a downward movement in the S&P 500.

As of July 1998, the model pricing error was 17.06%. On the other hand, there have also been

periods where the market price was lower than the model price. This is true for much of 1986

and 1988, from mid-1993 to mid-1994, and lastly in early 1996. As the graph demonstrates, these

periods were followed by a substantial rise in the S&P 500, giving a mean-reversion character to

the out-of-sample percentage pricing errors.

In the case of Intel, the model's pricing-error path is highly volatile and it has three major

periods. From January 1979 through October 1987, the pricing errors were mostly positive, with

an average error of 21.7%. Early in this period, Intel underwent major product transitions with

its EPS ranging between $0.03 and $0.20, while its stock was trading between $2.00 and $4.00.

This made Intel's P/E ratio both high and volatile, leading to large model �tting errors. For this

period the pricing-error standard deviation was 30.23%. For the next major period from November

1988 to April 1995, the model pricing errors were mostly negative, with an average of -20.1%. In

fact, this period was associated with the two most severe pricing errors of -110.7% and -93.9%,

respectively in November and December 1988. In November 1988, the market price of Intel was

$2.84, whereas the model price was $5.98. Note that the market price was relatively depressed,

even though Intel's EPS increased from $0.23 to $1.98. Finally, during the remaining years in the

sample after May 1995, the pricing errors were mostly positive again with an average of 20.6%.

During this period, Intel's EPS was more than doubled from $2.09 to $4.47, while its stock price

appreciated from $14.7 to a high of $96.38.

The fact that the model pricing errors would go through periods of high and low levels (espe-

cially for stocks like Intel) re-enforces our earlier conclusion that for high-tech �rms, the single-

factor earnings dynamics in (5)-(6) may be too simple and not rich enough. To reduce the extent

of such systematically recurring pricing errors, one may include other �rm-speci�c growth

factors that are important for the market's valuation.

To further study the model's properties, we can look at both the autocorrelation and cross-

stock correlations of the out-of-sample pricing errors. Table VII shows the autocorrelations at

lags of up to 36 months. At the 1-month lag, the autocorrelations range from 0.73 to 0.94 for the
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Dow stocks, and from 0.50 to 0.90 for the technology �rms. At the 12-month lag, they go down to

about 0.20. As the lag increases to 24 months and 36 months, more �rms in our sample start to

have negative autocorrelations. The Ljung-Box Q-statistic also suggests that the null hypothesis

for the absence of autocorrelation is overwhelmingly rejected (see Q(24) and the corresponding

p-values for the �2 test). Thus, the pricing errors are highly persistent within several months

but mean-revert at longer horizons, particularly for the blue-chip Dow stocks. For the technology

stocks, the persistence level is slightly lower as these stocks are generally more volatile.

Table VIII presents the levels of covariation in pricing errors across stocks. Speci�cally, we

run the time-series regression below:

�n(t) = an + bn �
�(t) + ~!n(t); n = 1; � � � ; N; (25)

where �n(t) is the percentage pricing error of stock n in month t and ��(t) is the percentage

pricing error of either the S&P 500 or Motorola (arbitrarily selected for comparison). We report

the b coe�cient estimate, its associated p-value and adjusted R2. For most of the stocks, the b

estimates are signi�cant, with R2 values as high as 80.41% (when the S&P 500's pricing error is

the explanatory variable) and 43.79% (when MOT is the independent variable). Based on this 50

stock sample, the pricing errors appear to be signi�cantly positively correlated across stocks. For

instance, with the S&P 500, the average slope coe�cient, b, is 0.997 across the Dow stocks and

1.004 across the technology stocks. Therefore, a 1% model pricing error in the S&P 500 from one

month to the next causes the model pricing errors for an average stock to rise or fall in the same

proportion.

These results on pricing-error persistence and correlations indicate that there must bemarket-

wide factors missing from the model. First, although the model is separately estimated for each

stock, the pricing errors are contemporaneously correlated across stocks, implying the existence

of some \systematic state variable" that is important in the market's valuation but missing from

our model. Second, since the out-of-sample model price for a stock is based on the parameters

estimated from the stock's recent 3-year history, the model valuation represents \where the stock

should be traded today if the market would price the stock in the same way as in the past 3 years,"

that is, the model price captures the market's recent valuation standard for the stock. When the

pricing errors persist, it means that the model is persistently behind and cannot \catch up" with

the changing market. Again, there may be state variables (possibly �rm-speci�c) that are absent

in our model.5

5To reduce the level of persistence, the parameter estimation procedure can further correct for autocorrelations
in the pricing errors, as is done in our AR1 estimation method. But, as we learned in the previous section, such a
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In light of the above discussion, we can examine whether our model pricing errors are related to

four known systematic factors: (1) the default spread between Baa-rated and Aaa-rated corporate

bonds (DEF), (2) the term spread between the 10-year Treasury yield and the 1-month T-bill

rate (SLOPE), (3) the Fama-French (1996) size premium (SMB), and (4) the Fama-French value

premium (HML). For each stock/index, we perform the following regression:

�(t) = c0 + c1HML(t� 1) + c2 SMB(t� 1) + c3DEF(t� 1) + c4 SLOPE(t� 1) + ~!(t); (26)

where �(t) represents the month-t percentage pricing error of a stock. Since the market and model

prices are mid-month values, we use the prior-month value of each factor to avoid any look-ahead

bias. Several conclusions emerge for our sample of stocks. First, the average adjusted-R2 for the

technology stocks is 15.4% versus 8.6% for the Dow stocks, implying that the pricing errors of the

technology stocks are more predictable using these factors. Second, the pricing errors are unrelated

to the Fama-French HML factor: the coe�cient on the HML is statistically insigni�cant for 50

out of the 51 stocks (based on the Newey-West estimator). Third, the size premium SMB has

explanatory power for the pricing errors of the technology stocks, but not for the Dow stocks. In

particular, the SMB coe�cient is positive and signi�cant for a majority of the technology stocks.

That is, periods of high size premium coincide with high pricing errors, and vice versa. Third, the

interest-rate factors are potentially important. For example, the DEF coe�cient is signi�cant for

30 stocks, whereas the SLOPE coe�cient is so for 21 stocks. This exercise supports our earlier

assertion that a multi-factor term structure model or a pricing kernel with multiple risk factors

may be required to reduce model misspeci�cation.

4.3 Robustness and Sensitivity to Empirical Proxies

To investigate the robustness and sensitivity of our results to empirical proxies for G(t) and R(t),

we use the 30 Dow stocks as the focus, with the understanding that similar conclusions hold for

the other stocks. Furthermore, to save space, we con�ne the discussion to out-of-sample pricing

errors.

First, in Panel A of Table IX, we divide the full sample into the 1979:01-1989:12 and the

1990:01-1998:07 subsamples. An important point to note is that the performance of the main

model is roughly consistent across the two subsamples. For instance, the average out-of-sample

APE and STD for the Dow stocks are only slightly worse in the second than in the �rst subsample.

The di�erence in the average MPE is more signi�cant: the average MPE is -2.39% in the 1990's

statistical correction may produce worse pricing performance. Thus, a more desirable alternative may be to search
for better model speci�cations (rather than more statistical corrections).
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versus -0.28% in the 1980's. These numbers are also comparable to their counterpart in Table VI

for the full sample. The statistics for the dollar pricing errors di�er substantially between the two

subsamples, mainly because the Dow stocks went up a lot from the 1980's to the 1990's.

Up until now, we have employed the analyst-expected EPS growth from FY1 to FY2 as a

proxy for G(t). To investigate an alternative proxy, we analytically substitute the G(t) expression

from (18) into the valuation model (10)-(11), where G(t; �) is taken to be the analyst-expected

one-year forward EPS growth and � = 1. Following the same procedure as in (21), we re-estimate

the parameters on a rolling basis by �tting the model P/E to the market P/E. In each estimation,

we internally recover G(t) from the expected one-year-ahead EPS growth as described in (18).

We then use the parameter estimates and the G(t) estimate so obtained to price the stock out of

sample. This substitution technique has the potential advantage of simultaneously determining the

earnings parameters and G(t) within a uni�ed empirical framework. The resulting out-of-sample

pricing errors are reported in Panel B of Table IX. They show that this substitution technique

does not mitigate the model's misspeci�cations and it actually makes the pricing errors larger.

For example, comparing Tables VI and IX, we see that for the full sample the average APE for the

Dow stocks is now 18.67% versus the previous 17%, and the average STD is now 22.70% versus

the previous 21.38%. Similar increases are obtained for the two subsamples from the previous

to the current implementation. The average MPE experiences the largest increase in magnitude

from Table VI to Panel B of Table IX. Therefore, while our conclusions based on the APE and

STD are largely intact, this alternative choice for G(t) makes the overall pricing �t worse.

Next, we assess the sensitivity of out-of-sample pricing errors to the proxy choice of R(t).

In this experiment, we re-estimate the parameters as before, except that we replace the 30-year

Treasury yield by the 3-month Treasury bill rate. Panel C of Table IX presents the pricing-error

statistics for the full sample and the two subsamples. With this interest rate proxy, the average

APE for the Dow stocks is 24.02%, over 7% higher than its counterpart in Table VI, while the

average MPE is now 20.80% (versus the previous -1.15%). Similarly substantial increases in both

APE and MPE occur for the two subsamples. The worse pricing �t is also true based on the dollar

pricing errors. Therefore, the 3-month Treasury rate is a worse proxy than the 30-year Treasury

yield. As we discussed before, a possible reason is that the 30-year yield is better for discounting

equity shares because stocks have an in�nite-maturity date. For equity pricing considerations, our

exercise thus supports the choice of the 30-year yield.

In our last robustness checks, we hold the interest rate parameters constant across individual

stocks. As noted from (2) and (3), this amounts to �xing the pricing kernel for all the stocks.

There are two steps in the implementation process. First, we back out the interest rate parameters

from the S&P 500 data (jointly with the 30-year yield data). Then, pre-�xing the interest rate
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parameters according to the S&P 500-based estimates, we re-estimate the �rm-speci�c parameters

on a rolling basis using the trailing 3 years of data (as for Table VI, re-estimate once every year

from 1979 through 1997). The out-of-sample pricing errors so obtained for the Dow stocks are

displayed in Panel D of Table IX. This modi�cation only increases the average APE to 17.83%

for the full sample period, from the previous 17.00% in Table VI. Slight increases in pricing errors

are also observed for the subsamples (comparing Panels A and D of Table IX). Therefore, the said

implementation does not a�ect our results in any noticeable way.

In another modi�cation, we �rst estimate the interest rate parameters completely from the

Treasury STRIPS, where the 1985:01-1998:03 sample data is from the Lehman Brothers Fixed

Income Database. That is, we �t the Vasicek bond valuation model each month and obtain these

average estimates: �r = 0:098, � = 0:379 and �r = 0:077. Inserting these parameter values into

(10)-(11), we re-estimate the remaining �rm-speci�c parameters on a rolling basis as in the above

paragraph. In this case, the out-of-sample pricing errors are similar to the ones reported in Panel

D of Table IX. Our conclusion above is still robust.

5 Market-Implied Earnings Expectations

In the options literature, implied volatility is often viewed as capturing the market's assessment

of the implicit future uncertainty in the underlying stock. In stock valuation, we can ask a similar

question: given a stock's historical valuation, what is the implicit expected EPS growth necessary

to support the current stock price? This question is relevant not only because the market-implied

EPS growth provides a distinct way of assessing the stock's price, but also because security analysts

are sometimes slower than the market in responding to new information. Each security analyst

is typically responsible for a few �rms, and normally he/she has to conduct a lengthy research

before revising an EPS estimate. On the other hand, it can be said that investors are generally

faster in reacting to new information, causing the stock price to re
ect information more quickly.

As a result, the prevailing stock price may convey more up-to-date information about the growth

potential of a stock. That information can be recovered from the stock price via a stock valuation

model.6

6One might say that the stock price itself is a su�cient signal about the �rm's future. But, this reasoning does
not necessarily hold because a higher stock price may also re
ect a favorable interest rate environment.
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5.1 Implied Expected Earnings Growth

Based on our main model, the theoretical price is monotonically increasing in G(t). Thus, it allows

us to invert the value of expected EPS growth from the stock's market price, S(t). Denote the

implied EPS growth rate by bG(t). That is, substituting the observed S(t), R(t), Y (t) and the �

estimates from Panel B of Table III (the rolling parameter estimates), we numerically solve the

following equation for bG(t) (one for each month t):

0 = S(t)� � Y (t)

Z
1

0
exp

h
'(�)� %(�)R(t) + #(�) bG(t)i d�; (27)

where '(�), %(�) and #(�) are as given in (12)-(14).

Figure 5 plots the implied expected EPS growth against the consensus analyst growth forecast,

separately for the S&P 500 and Intel. In both cases, the average market-implied growth is higher

than the analyst estimates: they are respectively 0.1310 versus 0.0939 for the S&P 500 and 0.5619

versus 0.5243 for Intel. On the other hand, the analyst estimates are far less volatile than the

market-implied forecasts. In the case of the S&P 500, the standard deviation is 0.1014 for thebG(t) series and 0.0493 for the analyst expected G(t) series. The respetive standard deviations

are 0.9286 and 0.6530 for Intel. Comparing Figures 4 and 5, we can also note that periods of

positive (negative) pricing errors generally coincide with periods of market-implied forecasts being

higher (lower) than analyst estimates. Therefore, pricing errors and the relative position of the

market-implied versus analyst forecasts convey related information.

To further investigate the relationship, we can regress the market-implied bG(t) on the analyst

estimate G(t). For example, for the S&P 500 index and Intel, we obtain the following:

S&P 500: bG(t) = 0.04 + 0.97G(t) + ~!(t), R2=22%

Intel: bG(t) = -0.02 + 1.12G(t) + ~!(t), R2=62%.

The slope coe�cients are near unity, so the market-implied and analyst estimates co-move strongly

(especially for the S&P 500). Although not shown, the divergence between the market-implied

and the analyst estimates is larger for both the Dow stocks and the technology stocks, with their

respective average slope coe�cients at 1.44 and 1.22. Based on the Newey-West procedure, most

of the slope coe�cients are also statistically signi�cant. Overall, the �t of the above regressions is

reasonable with an average adjusted-R2 of about 32%.

It should be cautioned that the usefulness of the market-implied EPS forecast depends on the

model's extent of misspeci�cation. If the model is completely misspeci�ed, the implied forecast

may re
ect the model noise more than any true information embedded in the market. Since every

valuation model is expected to be misspeci�ed, the resulting market-implied EPS forecast will,
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like the Black-Scholes implied volatility, be a combination of noise and true information.

5.2 Pricing Stocks Using Market-Implied Earnings Expectations

In this subsection, we give an example in which the market-implied forecast is applied to price

the stock out of sample. If the market is faster in incorporating new information than analysts,

we should then expect the market-implied forecast to improve the model's pricing performance.

For this exercise, we again focus on our main model. Speci�cally, for each stock/index and at

each month t we �rst back out bG(t), as outlined in (27). Next, we use this market-implied bG(t),
together with the parameter estimates and the observed R(t+1) and Y (t+1), to price the stock in

month (t+ 1). This valuation process continues until the end of the sample period. The resulting

out-of-sample percentage and dollar pricing errors are reported in Table X.

Comparing Tables VI and X, we see that the market-implied forecasts lead to consistently

lower pricing errors than the analyst estimates. This is true for every stock/index and according to

every pricing-error metric. For instance, the APE, STD and MPE for the S&P 500 are respectively

8.17%, 9.8% and 3.4% based on the analyst estimates, whereas they are 3.81%, 5.66% and 0.05%

based on the market-implied. The ADE, STDD and MDE for Intel's dollar pricing errors are

$3.33, $7.38 and $1.93 based on the analyst estimates, but they are only $1.38, $3.67 and $0.09

based on the market-implied, respectively. Thus, incorporating market-implied growth rates into

the model reduces both the magnitude and dispersion of the pricing errors.

This pricing improvement can be interpreted in two di�erent ways. First, as documented in

Table VII, the pricing errors for a given stock are highly persistent from month to month. As the

market-implied forecasts and pricing errors are closely related, the expected EPS growth implied

by this month's market price should then �t next month's stock price better than the analyst

estimates. The second interpretation is that analysts may indeed perform worse than the market

in forecasting future EPS. As a result, we should pay more attention to the market-implied EPS

forecasts. However, which of the two interpretations is closer to truth can only be determined

through further research.

6 Concluding Remarks

In this paper, we separate the stock valuation problem from the �rm's production, dividend and

�nancial policies. While this partial equilibrium approach leaves out important corporate issues,

it does a�ord us a more focused problem: that is, we only need to value an exogenous stochastic

cash
ow stream. Under this framework, the task is to search for the appropriate speci�cations of
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the pricing-kernel and the earnings processes. In our main model, the parameterization of these

processes embeds a stochastic term structure for both interest rates and expected EPS growth.

Our empirical work demonstrates that modeling the earnings growth properly has a �rst-order

impact: omitting the stochastic EPS growth feature considerably worsens the pricing performance

of the valuation model. Adding a stochastic yield curve to the framework further improves the

pricing �t. The performance of our valuation model is signi�cantly better than its variants, with its

average (out-of-sample) absolute pricing errors ranging from 8.17% to 23.87%. Our pricing-error

metrics reveal worse model performance for growth-oriented technology stocks than for blue-chip

stocks. We also show that the pricing errors are serially correlated and often experience long

cycles of high/low errors, suggesting missing state variables from the model's earnings dynamics.

Furthermore, within our sample of stocks the pricing errors are highly correlated across stocks,

implying the existence of systematic factors that are important in the market's valuation but

excluded from our model.

The empirical �ndings suggest several research directions. First, one can introduce richer

earnings dynamics that lead to a multi-factor term structure of expected earnings growth. For

technology stocks, additional variables may be required to match the short and the long-end

of the expected-growth curve. Second, one can consider earnings processes that can take both

negative and positive values (e.g., Dong (2000)). Similarly, it may be empirically desirable to

examine jump-di�usion processes for earnings and/or expected earnings growth rates. Third, we

can look for other speci�cations for the pricing kernel and the term structure of interest rates.

Our empirical exercise indicates that including the term-premium and default-premium factors

will likely produce better performance. Since our model is based on a single-beta risk premium,

a pricing kernel that incorporates multiple risk factors may also yield performance improvement.

Lastly, one can compare the empirical performance of our model with discounted cash
ow models

(such as the residual-income model) and evaluate their relative performance.

Many applications can be pursued with our valuation approach. For example, Chen and Dong

(1999) adapt our model to study how the model valuation can be combined with traditional stock

selection methods to produce better investment strategies. Chen and Jindra (2001) apply this

model to re-examine stock-market seasonalities, while Jindra (2000) and Brown and Cli� (2000)

use our model to shed new light on seasoned equity o�erings and investor sentiment, respectively.

With a better speci�ed stock valuation model, we can clearly ask new questions and re-address

old ones.
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Appendix: Proof of the Equity Pricing Model in (10)

Conjecture that the solution to the PDE (9) is of the form (10). Solving the resulting valuation

equation and the associated Ricatti equations subject to the boundary condition s(t + � ; 0) =

Y (t + �) yields (10)-(11).

A special case of the main model is obtained by setting �r = �r = �r = 0 in (9). This

parametric case has constant interest rate r, but stochastic expected earnings growth G(t). In

this case, we get:

s(t; � ;G; Y ) = Y (t) exp ['(�) + #(�)G(t)] ; (28)

where:

'(�) = ��y� � r� +
1

2

�2g

�2g

 
� +

1� e�2�g�

2�g
� 2

�g
(1� e��g� )

!
+
�g�g + �y�g�g;y

�g

 
� � 1� e��g�

�g

!
;

#(�) =
1� e��g�

�g
;

subject to r � �g >
�2g
2�2

g

+
�g�y�g;y

2�g
� �y. We refer to this special case as the SG Model.

Next, let �g = �g = �g = 0 in (9), which leads to a constant expected earnings growth g.

Solving this model results in

s(t; � ;R; Y ) = Y (t) exp ['(�)� %(�)R(t)] ; (29)

with

'(�) = ��y� + g� +
1

2

�2r
�2r

 
� +

1� e�2�r�

2�r
� 2(1� e��r �)

�r

!
� �r�r + �y�r�r;y

�r

 
� � 1� e��r �

�r

!
;

%(�) =
1� e��r�

�r
;

subject to �r � g >
�2r
2�2

r

� �r�y�r;y
�r

� �y. We call this special case the SI Model. 2
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Table II: Parameter Estimates under the Objective Probability Measure

The reported structural parameters for the expected growth rate process are based on the
maximum-likelihood estimation of the transition density function:

L � max
�g;�0g;�g

1

T

TX
t=1

log
�
1

�

Z
1

0

Re [exp(�i uG(t+ � ))� F (t; �;G(t);u)] d�
�
;

where i =
p
�1, � = 1

12
(for monthly sampled observations) and the characteristic function, denoted

F (t; �;G(t);u), is

F (t; �;G(t);u) = exp

"
i u �0g

�
1� e��g �

�
�

u2 �2g

4�g

�
1� e�2�g �

�
+ i u e��g�G(t)

#
:

The asymptotic p-values are recorded in square brackets and the (cross-sectional) standard errors in
parenthesis. The maximum likelihood estimation of the interest rate process leads to �0r = 0:0794,
�r = 0:107 and �r = 0:0118. The reported � is the correlation coe�cient between dR(t) and dG(t);
and � is obtained by regressing dividend yield on the earnings yield (without a constant). Average
dividend divided by average net-earnings per share yields a similar �. Among the technology stocks,
only six �rms paid any cash dividends (ADBE, CMPQ, INTC, MOT NT, and TXN).

All All

Parameter S&P 500 GE XON INTC MOT 30 Dow 20 Tech

Stocks Stocks

�0g 0.084 0.115 0.074 0.227 0.298 0.169 0.296
[0.000] [0.000] [0.050] [0.000] [0.040] (0.022) (0.044)

�g 0.010 2.120 2.438 3.284 1.508 2.613 2.688
[0.030] [0.000] [0.040] [0.000] [0.050] (0.771) (0.485)

�g 0.053 0.056 0.098 1.367 0.163 0.200 0.425
[0.000] [0.000] [0.020] [0.000] [0.040] (0.049) (0.083)

L 2.388 2.554 2.195 -0.206 1.318 1.629 0.776
(0.138) (0.156)

� 0.02 0.09 0.16 -0.04 0.00 0.02 -0.02
(0.01) (0.02)

� 44.29% 41.48% 61.79% 3.39% 18.07% 36.31% 3.84%
[0.00] [0.00] [0.00] [0.00] [0.00] (2.34) (1.57)
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d
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e
S
S
E
E
stim
a
tio
n
)

A
ll
rep
o
rted
resu
lts
a
re
b
a
sed
o
n
th
e
fo
llo
w
in
g
reg
ressio
n
(
~!
n

(t)
is
reg
ressio
n
d
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b
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b
ra
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m
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e
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o
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P
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a
m
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r
E
s
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a
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a
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o
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e
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F
o
r
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ck
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ex
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b
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o
f
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e
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o
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recen
t
3
-y
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r
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b
sa
m
p
le
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u
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a
te
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e
sto
ck
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ctu
ra
l

p
a
ra
m
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im
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g
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e
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p
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p
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p
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p
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